
an educational workshop for high school teachers, July 2010, Chicago, IL

An educational outreach workshop was held as part of the 2010 ACA meeting in Chicago. This workshop was geared towards school teachers, and carried Illinois continuing education certification. Sponsorship by the ACA, the USNCCr and a supplement from the NSF allowed the teachers to attend the workshop at no charge. Unfortunately, due to inclement weather that caused severe flooding, many of the 29 registered attendees could not make it to the workshop.

The workshop combined presentations from a number of instructors with hands-on exercises that could be taken back to the classroom. As an intriguing start to the day, Bruce Knoll (Bruker) demonstrated that with modern instrumentation, users need very little training to mount a crystal and start collection of a dataset. By lunchtime, the diffractometer had finished collecting data on aspirin, and the automated software had gone through all steps of structure solution without requiring user input. While the data were being collected, Claudia Rawn (Oak Ridge National Lab/UT Knoxville) took the teachers on a Materials Discovery Tour, introducing them to basic concepts of bonding, structure, and structure-property relationships. Her powerpoint presentation was balanced with a number of hands-on exercises, including stacking of closedpacked layers of spheres, identifying several metal, ceramic and polymer spheres based on known

After lunch, Katherine Kantardjieff (CSU Pomona) introduced remotely enabled instrumentation and how it can be used to expose a wider audience to crystallographic experiments. This was followed by a highly entertaining presentation by Jim Kaduk (IIT), who showed that powder diffraction can provide interesting information about everyday materials like peanut butter, oreos and many other frequently encountered compounds. The last two sessions by Colin Groom (CCDC) and David Goodsell (Scripps Research Institute, representing the RCSB PDB) gave the workshop participants a chance to learn about crystallographic databases, and to try them out hands-on.

A few of the teachers stayed for Venki Ramakrishnan's opening lecture to the ACA meeting, and were thrilled to have a chance to meet him and get his autograph.

The workshop feedback from the participants was very positive, encouraging us to
properties like density, and polymer chain entanglement. A highlight of her session was the construction of basic crystal structures (face-centered cubic material and rocksalt) from legos, which was so popular that all other presenters and even the AV staff participated!

These activities were followed up by Cora Lind's (Univ. of Toledo) introduction to diffraction basics, which exposed the teachers to waves and slit experiments and drew analogies to diffraction experiments. With the aid of diffraction grating slides and lasers, the concepts of repeat distance and atom identity determining spot location and spot intensity were demonstrated.
run similar workshops in the future. Teacher attitudes changed from apprehension in the morning to excitement after the first few hands-on exercises, and by the end of the day, several participants were making plans for how to use what they learned in their own classrooms! Several of them also took additional hands-on kits to share with their colleagues.


## Diffraction Basics

## Cora Lind-Kovacs

# Department of Chemistry \& Biochemistry 

The University of Toledo
Toledo, OH 43606
cora.lind@utoledo.edu

## Diffraction

- Definition (from "Cambridge Advanced Learner’s Dictionary"):
- diffraction noun [U] SPECIALIZED
(a pattern caused by) a change in the direction of light, water or sound waves
- diffract verb [T]
to separate light into coloured strips or into light and dark strips
- Definition (from "Merriam Webster’s Dictionary"):
- Main Entry: dif•frac•tion; Function: noun

Etymology: New Latin diffraction-, diffractio, from Latin diffringere to break apart, from dis- + frangere to break

- a modification which light undergoes in passing by the edges of opaque bodies or through narrow slits or in being reflected from ruled surfaces and in which the rays appear to be deflected and to produce fringes of parallel light and dark or colored bands; also : a similar modification of other waves (as sound waves)


## X-ray diffraction

- "Scattering of X-rays by the atoms of a crystal that produces an interference effect so that the diffraction pattern gives information on the structure of the crystal or the identity of a crystalline substance" (Webster's)
- Both light and X-rays are electromagnetic radiation - the only difference lies in the wavelength!
- X-ray diffraction can be envisioned as an equivalent process to what happens when you shine light through a grating
- Formulism obeys the same laws as "slit experiments"


## Diffraction of light by slits



- Incoming light is a plane wave
- Slit apertures result in an outgoing spherical wave
- Interference determines the diffraction pattern


## Diffraction of light by masks



FIGURE 3.7. Examples of diffraction patterns from a variety of masks. The mask with the holes in it is to the left and its diffraction pattern is to the right. The diffraction pattern of (a) a single round hole in a mask, (b) two round holes, and (c) two round holes further apart. Note that in (b) and (c) the diffraction pattern is sampled (in lines) with a spacing that is inversely proportional to the distance between holes in the mask. The diffraction effects when the sizes of the holes in the masks are increased are shown in (d), (e), and (f). The holes are larger than in (a), (b), or (c), but the spacings between their centers are the same. Recall that the experimental diffraction pattern is now more compact, illustrating the reciprocal relationship between the size of an object and its diffraction pattern. Since the spacings of holes in the masks are the same in (a), (b), and (c), and in (d), (e), and (f), the distances between sampling regions are also the same. The effect of changing the shape of the holes in the mask is shown in (g), (h), and (i), where the holes are rectangular in shape. Again, the reciprocal relationship between dimensions in real space and in the diffraction pattern is shown. The wider part of the hole gives a narrower diffraction pattern. The spacings between holes are the same as in (a) to (f). Finally, the effect of different arrangements of holes on the diffraction pattern. In (j) there are two holes in the mask, and the resulting diffraction pattern is similar to that in (b), although one mask is rotated with respect to the other. In (k) the effect of three holes, equivalent to three superpositions of the diffraction pattern in (j), each at $120^{\circ}$ to each other is seen. In (l) the diffraction pattern of six holes is shown. (Reprinted from G. Harburn, C. A. Taylor and T. R. Welberry: Atlas of Optical Transforms. Copyright © 1975 by G. Bell \& Sons Ltd. Used by permission of the authors and the publisher, Cornell University Press.)

## Waves



## Wave equations

- A wave can be described by a cosine function
- amplitude is position dependent (x)
- amplitude is time dependent $(\mathrm{t})$

$$
\Rightarrow \mathrm{A}=\cos (\mathrm{kx}-\omega \mathrm{t})
$$

- Two parallel waves will interact with each other
- called interference
- constructive interference if waves are in phase
- destructive interference if waves are exactly out of phase
- The interaction between waves can be envisioned by addition of their wave equations


## Adding wave functions



> in phase (constructive interference)

out of phase (destructive interference)

partially out of phase
"Crystal Structure Analysis for Chemists and Biologists", Glusker, Lewis and Rossi, VCH, 1994.

## Interference

- For waves with the same frequency and amplitude, we see constructive interference when two waves have a phase difference of $n \lambda$, where $(n \in \mathbb{Z})$
- called "in phase"
- Destructive interference is observed for a phase difference of (n
$+1 / 2) \lambda$, where $(\mathrm{n} \in \mathbb{Z})$
-called "out of phase"
- A phase difference can result from a path difference -happens in slit experiments
-the same thing happens when X-rays are diffracted by a crystal


## What is a crystal?

- Historic definition before the advent of crystallography
- A solid with well-defined faces
- Crystallographic definition
- A material with a regularly repeating structural motif
- The strict definition is more vague
- Any material that gives a diffraction pattern with sharp peaks


## Repeating motif: The unit cell

- The repeating structural motif in a crystal is referred to as a unit cell
- Only the size and contents of one unit cell are necessary to describe the entire crystal
- Remember to use a right-handed axis system!

"Crystal Structure Analysis for Chemists and Biologists", Glusker, Lewis and Rossi, VCH, 1994.


## The seven crystal systems

| Crystal system | Unit cell edges | Unit cell angles |
| :--- | :--- | :--- |
| Cubic | $a=b=c$ | $\alpha=\beta=\gamma=90^{\circ}$ |
| Hexagonal | $a=b \neq c$ | $\alpha=\beta=90^{\circ}, \gamma=120^{\circ}$ |
| Rhombohedral | $a=b=c$ | $\alpha=\beta=\gamma \neq 90$ or $120^{\circ}$ |
| Tetragonal | $a=b \neq c$ | $\alpha=\beta=\gamma=90^{\circ}$ |
| Orthorhombic | $a \neq b \neq c$ | $\alpha=\beta=\gamma=90^{\circ}$ |
| Monoclinic | $a \neq b \neq c$ | $\alpha \neq \gamma=90^{\circ}, \beta \neq 90$ or $120^{\circ}$ |
| Triclinic | $a \neq b \neq c$ |  |

## Diffraction - Discovery Slide



## Reciprocal space

- We do not see the periodic electron density directly during a diffraction experiment
- we only observe the intensity distribution of X-ray scattering from the crystal(s)
- The diffraction intensity is correlated to the electron density in the crystal by a Fourier transform
- often referred to as direct space and reciprocal space
- This means that we sample reciprocal space with our diffraction experiments
- we can define a reciprocal lattice that corresponds to the direct (crystal) lattice


## Laue equations

- In 1912, Max von Laue realized that the path differences $\mathrm{PD}_{1}, \mathrm{PD}_{2}$ and $\mathrm{PD}_{3}$ for waves diffracted by atoms separated by one unit cell translation have to be a multiple of the diffraction wavelength for constructive interference
- $\mathrm{PD}_{1}=\mathrm{h} \lambda, \mathrm{PD}_{2}=\mathrm{k} \lambda, \mathrm{PD}_{3}=1 \lambda$
- $\mathrm{h}, \mathrm{k}, \mathrm{l} \in \mathbb{Z}$
- He showed that these three conditions have to be fulfilled simultaneously


## Bragg's law

- Reflection of X-rays from parallel lattice planes
- families of planes have equal spacing
- Constructive interference when $\mathrm{PD}=\mathrm{n} \lambda$
- The Laue equations can be rewritten as $2 \mathrm{~d}_{\mathrm{hkl}} \sin \theta_{\mathrm{hkl}}=\mathrm{n} \lambda$


## Diffraction Intensities - VSEPR Slide


 b



























This VSEPR Slide is used with permission of ICE, the Institute for Chemical Education, for educational purposes only. The slide is part of Optical Transform Kit. Kits, as well as sets of 10 individual slides, are available from ICE, http://ice.chem.wisc.edu.






## What's a hole got to do with a crystal?

## The hole scatters the

 light rays- An electron scatters Xrays
- Imagine a crystal as a
"hole pattern" of electrons!


FIGURE 5.6. Optical diffraction patterns illustrating scattering by (a) a two-dir monatomic lattice (portion only), (b) a single molecule (benzene ring), (c) two $n$ (d) four molecules, (e) a "row" of six molecules (portion only), (f) a net of (portion only). [Reproduced from Optical Transforms, by C. A. Taylor and H. Lif the permission of Routledge.]
"Structure Determination by X-ray Crystallography", Ladd and Palmer, Plenum, 1994.


## The opposite approach...

...transforming your diffraction pattern into an electron density map
(c)


(f')

( $\mathrm{g}^{\prime}$ )

(h)

The resolution of your electron density map will strongly depend on how many reflections you use in creating it!
"Structure Determination by X-ray Crystallography", Ladd and Palmer, Plenum, 1994.

## Real and reciprocal space

## Crystal space

Diffraction space

[^0]
## Getting the Most out of the Protein Data Bank



David S. Goodsell
The Scripps Research Institute
RCSB Protein Data Bank


Protein Data Bank in 1973


## 1 Heme:

News I Publcations Usagelkelicresce Pulices Oepostlon fulioes Weboter FAQ Gepostion fag Contact US about Us
Careers
New Websto Features
1 Bepention 4ytr
Aa Depent Servicas
Fiectron Nicroicopy X -rar I Nopl vatidation Server Bie5yne Beamlis Related Tools

## \# Serarch

Afranced Siewnh
Latest Releapy Sequenci Starch Cremical Comppherts Unreipated Emtries aromse Cotabas. Hittograms

Exploren:
Last Structure: 4D1
Resulta:
Query (124 hits):
: Query Resut

- Query Mitary
- Save Query to MvPos


## 1 Thets

## Hie Demriead.

ITP Services
file formata
Services: RISThul I SOAN wioget
compare Structures

## \& trucution

Underxtanding POI Dits Molecule of the Month Iducaboral Resources

## A Resource for Studying Biological Macromolecules

The POA archive contains information about experimentaly-determined structures of proteins, nudeic acids, and complex assemblies. As a member of the wwPDD, the RCSD POD owrates and annotates POD data actording to agreed upon itandards.

The RCSB POB abo provides a variety of tooks and rescurces. Users can perform simple and advanoed searches based on annotatons relating to sequence, structure and function. These moleoules are visualaed, downloaded, and analyzed by wiers who range from students to specializest scientiats.
Hide Weicome Message



## Molecule of the Month!

Epidermal Growth Factor
The cells in your body constantly communicate with each other, negotiating the transport and use of resources and deciding when to grow, when to rest, and when to de. Oten, these messages are carried by small proteins, such as ipldermat growth factor (tGr), tctis a message tetting cets that they have permisiton to grow. It is reteased ty cethi in areas of active growth, then is ether picked up by the cell zselt or by neighboring cells, stimulating their ability to divide. The message is received by a receptor on the cel surface, which tinds to EGF and rebays the message to signaling proteins inside the cell, ultimgtely moblizing the processes needed for growth.

Full Article..

## Protein Structure Initiative Featured Molecule:

## RBBP9 (Retinoblastoma Binding Protein 9)

Researchers at NESG are using structural genomics to reveal the secrets of signaling within cancer cells. The structure of retinoblastoma binding prokein 9 showed that it is a serine protease as well as a partner of retinoblastoma prokein.
Full Article | PSI Structural Genonics Kinowledgebase

## 1 Latentstructures

3hsb - Crystal structure of YmaHt ( Hfq$)$ ) from Dacillus subtilis in complex with an RNA aptamer Babs, S., Someya, T, Kumasaka, T., Kawai, G., Nakamura, K.


Crystal structure of Ymah ( $\mathbf{H} f(\mathrm{f})$ ) trom Bacillus subtilis in complex with an RNA aptamen Abstract not avalablie.

Custemire TMls Pege

## I Mey Featuren Mere

 MotM Features Linked to Relevant Entries Read more about the releases: Wetsite Release Nochove:
## + Nrwe

 mile Wenkly I Quarterly I YearlyStatement on Retraction of PDe Entries

## 20stom 22

Latest Structures Widget
A new widget on the home page displavi a wideuhow of the latent PDO setries.
Head More

## Previous Weekly News

- Papers pablinke
* Hew Websili F Faturss
- Dimproved Veniee of ADER Avaliebles, Transtionat Implementation starts June 14
* Grate a Catape of triveture) Search the RCsa poo in Your Web Brawser


## : PIP ArchNe: HISH

Curent pos ITP Archive: flp.wwpdb.ory
rearly ITP Snaphots: fip://snapshots.wwpdb.org

Giview in 30 (2mol)
Oheck out all of the latest struchures released.
New user? Try the browser Compatibility Check and information on Getting Started, or the Narrated Tutorial.

How do we see molecules?





Coordinates deposited in the PDB are the result of:

1) Crystallographic electron density
2) Model constraints and biological information
3) Interpretation


PDB entry 3dnb; 1.3 Å resolution


PDB entry 6bna; 2.21 Å resolution

The final model is a compromise between the electron density and the model constraints.


The atomic model is typically composed of:

1) Coordinates of the atom centers
2) Atom types (number of electrons)
3) Temperature factors
4) Occupancies


Temperature factors model (primarily) vibrational disorder


Two histidines from myoglobin (1mbi)


PDB entry 1mbi

## Occupancy values are used for cases of static disorder



## Static Disorder in HIV Protease



PDB entry 2hc0

## Determining the Atom Type

## Interpretation is often based on shape and chemistry.



Determining the Atom Type
[NiFe] Hydrogenase


PDB entry 1yq9


JACS 118, 12989 (1996)

Ordered water molecules are typically observed in first and second coordination shells


PDB entry 158d

## 1 Heme:

News I Publcations Usagelkelicresce Pulices Oepostlon fulioes Weboter FAQ Gepostion fag Contact US about Us
Careers
New Websto Features
1 Bepention 4ytr
Aa Depent Servicas
Fiectron Nicroicopy X -rar I Nopl vatidation Server Bie5yne Beamlis Related Tools

## \# Serarch

Afranced Siewnh
Latest Releapy Sequenci Starch Cremical Comppherts Unreipated Emtries aromse Cotabas. Hittograms

Exploren:
Last Structure: 4D1
Resulta:
Query (124 hits):
: Query Resut

- Query Mitary
- Save Query to MvPos


## 1 Thets

## Hie Demriead.

ITP Services
file formata
Services: RISThul I SOAN wioget
compare Structures

## \& trucution

Underxtanding POI Dits Molecule of the Month Iducaboral Resources

## A Resource for Studying Biological Macromolecules

The POA archive contains information about experimentaly-determined structures of proteins, nudeic acids, and complex assemblies. As a member of the wwPDD, the RCSD POD owrates and annotates POD data actording to agreed upon itandards.

The RCSB POB abo provides a variety of tooks and rescurces. Users can perform simple and advanoed searches based on annotatons relating to sequence, structure and function. These moleoules are visualaed, downloaded, and analyzed by wiers who range from students to specializest scientiats.
Hide Weicome Message



## Molecule of the Month!

Epidermal Growth Factor
The cells in your body constantly communicate with each other, negotiating the transport and use of resources and deciding when to grow, when to rest, and when to de. Oten, these messages are carried by small proteins, such as ipldermat growth factor (tGr), tctis a message tetting cets that they have permisiton to grow. It is reteased ty cethi in areas of active growth, then is ether picked up by the cell zselt or by neighboring cells, stimulating their ability to divide. The message is received by a receptor on the cel surface, which tinds to EGF and rebays the message to signaling proteins inside the cell, ultimgtely moblizing the processes needed for growth.

Full Article..

## Protein Structure Initiative Featured Molecule:

## RBBP9 (Retinoblastoma Binding Protein 9)

Researchers at NESG are using structural genomics to reveal the secrets of signaling within cancer cells. The structure of retinoblastoma binding prokein 9 showed that it is a serine protease as well as a partner of retinoblastoma prokein.
Full Article | PSI Structural Genonics Kinowledgebase

## 1 Latentstructures

3hsb - Crystal structure of YmaHt ( Hfq$)$ ) from Dacillus subtilis in complex with an RNA aptamer Babs, S., Someya, T, Kumasaka, T., Kawai, G., Nakamura, K.


Crystal structure of Ymah ( $\mathbf{H} f(\mathrm{f})$ ) trom Bacillus subtilis in complex with an RNA aptamen Abstract not avalablie.

Custemire TMls Pege

## I Mey Featuren Mere

 MotM Features Linked to Relevant Entries Read more about the releases: Wetsite Release Nochove:
## + Nrwe

 mile Wenkly I Quarterly I YearlyStatement on Retraction of PDe Entries

## 20stom 22

Latest Structures Widget
A new widget on the home page displavi a wideuhow of the latent PDO setries.
Head More

## Previous Weekly News

- Papers pablinke
* Hew Websili F Faturss
- Dimproved Veniee of ADER Avaliebles, Transtionat Implementation starts June 14
* Grate a Catape of triveture) Search the RCsa poo in Your Web Brawser


## : PIP ArchNe: HISH

Curent pos ITP Archive: flp.wwpdb.ory
rearly ITP Snaphots: fip://snapshots.wwpdb.org

Giview in 30 (2mol)
Oheck out all of the latest struchures released.
New user? Try the browser Compatibility Check and information on Getting Started, or the Narrated Tutorial.

# An Information Portal to Biolo 

| mex 1 Famar | PVe 10 or Teat it Memoglobir |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 mime Mitr | 4 cos Structars Rets |  | Jumbern | 7171090980 | Conts | x. ${ }^{\text {a }}$ | cane min |  |
| man A Pytomery <br> (baye/hefarence) Oepestion Buticies Webuite FAD | Atraseed Kormerd | Quary fort Mewoelt | D日月, |  |  |  |  | Oury Option in |

Websete $\operatorname{FAg}$
Deponitan FAM
Centact 14
Centact U4
Corvers
External Linka
Neen Webithe Festur es

Sort try i Relenis Cuss is Bewhs per fope: :
Daplaring reavib 1 - 10 ef 480 sotal | Page 1 of 40 | Jarro to page: $\square$ CO



Crystal structure of rat methemoglobin in R2 state


## Melens

Compound:

rimationt tore muatakie


June 2010 Molecule of the Month by David Goodsell Previous Features doi: $10.2210 / \mathrm{rcsb} \_\mathrm{pdb} / \mathrm{mom}$ _ $2010 \_6$

## Epidermal Growth Factor

Keywords: cell signaling, cancer, ErbB, HER

## 1. Introduction

The cells in your body constantly communicate with each other, negotiating the transport and use of resources and deciding when to grow, when to rest, and when to die. Often, these messages are carried by small proteins, such as epidermal growth factor ( EGF ), shown here in red from PDB entry 1 egf. EGF is a mersage telling cells that they have permission to grow. It is released by cells in areas of active growth, then is either picked up by the cell tseif or by neighboring cells, stimulating their ability to divide. The message is recelved by a receptor on the cell surface, which binds to EGF and relays the message to signaling proteins inside the cell, ultimately mobilzing the processes needed for growth.

## 2. Domains and Dimers

The EGF receptor, shown here in blue, is a flexoble protein with many moving parts, including a large extracellular portion, a section that crosses the cell membrane, a kinase domain and a long flexible tail. The portion facing outwards from the cell, shown at the top here, is composed of four articulated domains that recognize EGF, When EGF is not around, it folds back on itself, as shown in the structure on the tef. Then, when EGF binds, the receptor opens up and binds to another copy of the receptor, forming the dimeric complex shown on the right This brings together two copies of the kinase domain, shown at the bottom here. Since the kinase domains are close to one another, they can add phosphate groups to tyrosine amino acids on the long, flexible tails of the receptor (the tails are not seen in this structure, so they are shown here with dots). The phosphorylated talls then stimulate the signaling proteins inside the cell.

## 3. Structural Surprises

Since the EGF receptor is so flexible, it has been studied by breaking it into several pieces and studying each one separately, Consequently, several PDB files were needed to create this illustration, including ingl, ilvo, 2jwa, 1 m 17 and 2 gss 6 . The structures of the different parts of the EGF receptor revealed several surprises. Pirst of all, researchers found that EGF binds on either side of the receptor complex, not in the middle like other similar receptors. EGF appears to mold the receptor into the proper shape for dimerization, instead of acting like glue between the two chains. Also, careful analysis of the kinase domain showed that it is activated by asscciation in an asymmetric head-to-tail fashion, in spite of the symmetric association of the extraceliular portion.

## 4. Large Family

EGF and the EGF receptor are part of an extended family of proteins that together control aspects of cell growth and development. These include at least seven similar protein messages, such as transtorming growth factor alpha and amphiregulin, and four receptors, collectively termed ErbB or HER receptors. These messages and receptors can mix and match, with different messages bringing together two identical receptors or two different receptors. In this way, a wide variety of messages may be carried by the system, tailored for the needs of each type of cell.

## Contents

1. Introduction
2. Domains and Dimers
3. Structural Surprises
4. Large Family
5. Turning the Receptor Off
6. Exploring the Structure
7. Toplics for further exploration
8. Additional reading about EGF
9. Related PDB IDS


## 6. Exploring the Structure

| Exploring the 5tructure | Jmol 1 | 3mol 2 |
| :---: | :---: | :---: |


click on the image for an interactive Imol
The signal carried by EGF can be dangerous if used improperly. Many forms of cancer circurnvent the normal EGF signaling process, giving themselves permission to grow without control. Because of this, drugs that block EGF signaling are effective for the treatment of cancer. Two examples are shown here. At the left, the drug lapatinib is bound in the linase domain of the receptor, blocking the signal inside the cell ( POB entry $1 \times \mathrm{kk}$ ). It is very similar to the ATP used by the receptor, and binds tightly in the active site. Therapeutic antibodics are also used for cancer treatment. Herceptin is shown on the right bound to the extracellular domain of MER2/ErbB2 (POB entry in8z), and the antibody cetuximab bound to the EGF receptor may be found in POB entry Iyy9. To explore these structures in more detail, dick on the images for an interactive Imol image.

## 7. Topics for further exploration

1. Compare the mode of dimerization in the EGF receptor and the human growth hormone receptor.
2. EGF receptor and similar receptors are currently the targets of development of drugs for cancer therapy. Can you find other examples of structures in the POB with drugs?


Take the time to become really comfortable with an interactive molecular viewer

STRUCTURE OF HUMAN OXYHAEMOGLOBIN AT 2.1 ANGSTROMS RESOLUTION

1HHO 18 Displey Fias: 8 Dewnulese Pies : Q shars this Poge

Saplay ef Bologcal Ausinty. (View Aupmmetric Uneti]
(8)






## Crystallographers will do anything that they need to do to get crystals




The structure may include only a fragment of entire protein


Glycolysis<br>ldgk human lhox rabbit<br>4pfk bacterial 4ald human<br>$2 y p i$ yeast<br>3gpd human 3pgk yeast 3pgm yeast<br>2one yeast<br>leOu bacterial



Crystals are a strange environment for biological molecules


Biologically-relevant assembly Sickle Cell Hemoglobin 2hbs


Frozen conformations Antibodies ligt, ligy, 1hzh


Incompatible symmetry Actin 1atn


Missing loops and missing hydrogen atom


Missing glycosylation

## Symmetry and Biological Assemblies



Asymmetric unit $=1$ chain


Asymmetric unit $=2$ chains


2DHB
辰 Display Files 7
Download Files $v$层 Print this Page $\pm$ Share this Page

## - Biological Assembly ?



## Octopine Dehydrogenase



PDB entry 3c7d


1ylm from PSI Structural Genomics Knowledgebase

Structures may include His tags or selenomethionine


EcoRV Restriction Endonuclease

Before cutting lrva After cutting lrvc

$\alpha 1$-antitrypsin 1psi, 1k9o, lezx


Kinesin 1bg2, 2kin


Alpha Crystallin 3lle,3l1g


Ribosome decoding center $2 w d g$

## Acknowledgements



O Rutgers ₹ UCSD
www.pdb.org
info@rcsb.org

Funding Agencies for all Projects:
NSF, NIGMS, DOE, NLM, NCI,
NINDS, NIDDK
Wellcome Trust, EU,
CCP4, BBSRC, MRC, EMBL BIRD-JST, MEXT


# Understanding Everyday Materials using X-ray Powder Diffraction 

James A. Kaduk Poly Crystallography Inc. Naperville IL 60540 kaduk@polycrystallography.com



## ILLINOIS INSTITUTE

 OF TECHNOLOGY
## X-ray Diffraction




Chocolate Sandwich Cookies



[kadu1085.gs] Oreo filling, hexane-soluble (40,30,zbc) JAK
[kadu1079.gs] Famous Amos filling, hexane-soluble (40,30,zbc) JAK


Peanut Butter


| Sample | Skippy <br> creamy | Skippy <br> reduced fat | Jif <br> reduced fat | Smucker's <br> Natural |
| :---: | :---: | :---: | :---: | :---: |
| Ingredients | peanuts <br> sugar <br> salt <br> hydr. veg. oils | peanuts <br> corn syrup sol. <br> sugar <br> soy protein <br> salt <br> hydr. veg. oils <br> mono/diglyc. <br> minerals <br> vitamins | peanuts <br> corn syrup sol. <br> sugar <br> soy protein <br> salt <br> molasses <br> minerals <br> vitamins | peanuts <br> salt |
| sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ <br> $\mathrm{wt} \%$ | 9.4 | 10.0 <br> $\mathrm{NI} \mathrm{sugars} \mathrm{wt} \%$, | 9.4 | 11.4 |

Wine Sediment
[kadu937.gs] Wine Crystals ( $40,40,0.3, z b c$ ) JAK


## Bond Distances in Calcium Tartrate Tetrahydrate

| Bond | This Work | CATART <br> 1968 | CATART01 <br> 1982 | CATART02 <br> 1993 | MOGUL 1.1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C2-C3 | $1.535(4)$ | 1.50 | 1.528 | 1.529 | $1.53(2)$ |
| C4-C5 | $1.536(4)$ | 1.50 | 1.532 | 1.532 |  |
| C3-C4 | $1.559(4)$ | 1.52 | 1.529 | 1.522 | $1.53(2)$ |
| C2-O6 | $1.230(4)$ | 1.27 | 1.267 | 1.266 | $1.25(2)$ |
| C2-O7 | $1.263(5)$ | 1.26 | 1.242 | 1.248 |  |
| C5-O10 | $1.231(5)$ | 1.24 | 1.269 | 1.269 |  |
| C5-O11 | $1.287(4)$ | 1.31 | 1.241 |  |  |
| C3-O8 | $1.436(4)$ | 1.44 | 1.423 | 1.433 | 1.428 |
| C4-O9 | $1.424(4)$ | 1.43 | 1.432 |  |  |
| Ca1-O6 | $2.350(3)$ | 2.39 | $2.377(3)$ | 2.374 | $2.42(10)$ |
| Ca1-O11 | $2.391(3)$ | 2.43 | $2.416(3)$ | 2.419 | CSD 5.27 |
| Ca1-O7 | $2.437(3)$ | 2.42 | $2.425(3)$ | 2.403 | 2.48 |
| Ca1-O10 | $2.507(3)$ | 2.52 | $2.506(2)$ | 2.483 | bond valence |
| Ca1-O8 | $2.481(3)$ | 2.51 | $2.474(3)$ | 2.458 |  |
| Ca1-O9 | $2.533(3)$ | 2.54 | $2.518(3)$ | 2.510 |  |
| Ca1-O12 | $2.482(3)$ | 2.48 | $2.494(3)$ | 2.488 |  |
| Ca1-O13 | $2.387(3)$ | 2.47 | $2.432(3)$ | 2.438 |  |
|  |  |  |  |  |  |

## The foil from the wine bottle





Sample X axis - horizontal to right
Sample Y axis - vertical
Pole figure psi 0 at center,
90 at rim
Pole figure gamma 0 at right,
90 at top
Contours are drawn at
0.217
0.419
0.621
$0.823 \quad 1.025$
1.226
1.428

Balsamic Vinegar Sediment


Cleaning Products

## OxiClean Bulk



## OxiClean Blue Granules





## Carbona Stain Devils 8



# Sodium Peroxyborates 

$\mathrm{Na}_{2}\left[\mathrm{~B}_{2}\left(\mathrm{O}_{2}\right)_{2}(\mathrm{OH})_{4}\right]\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$
$\mathrm{Na}_{2}\left[\mathrm{~B}_{2}\left(\mathrm{O}_{2}\right)_{2}(\mathrm{OH})_{4}\right]\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$
$\mathrm{Na}_{2}\left[\mathrm{~B}_{2}\left(\mathrm{O}_{2}\right)_{2}(\mathrm{OH})_{4}\right]$


Door Crud



Rust


## Crystalline Phases in Tank Sludges

| Sample | Mobile | Birmingham |
| :---: | :---: | :---: |
| Goethite, $\alpha-\mathrm{FeOOH}, \mathrm{wt} \%$ | $57.7(3)$ | $64.7(3)$ |
| Size, $\AA$ | $200 \times 120 \times 120$ | $160 \times 80 \times 80$ |
| Lepidocrocite, $\gamma$-FeOOH, wt $\%$ | $10.3(4)$ | $26.8(5)$ |
| Size, $\AA$ | $110 \times 580 \times 580$ | $70 \times 270 \times 270$ |
| Magnetite, $\mathrm{Fe}_{3} \mathrm{O}_{4}, \mathrm{wt} \%$ | $23.3(3)$ | $8.6(3)$ |
| Size $\AA$ | 190 | 280 |
| Halite, $\mathrm{NaCl}, \mathrm{wt} \%$ | $8.7(2)$ | - |
| Size, $\AA$ | 480 |  |

## Scott's Moss Control Granules

0-0-16 (N-P-K oxides)
double sulfate of K and Mg
$17.5 \% \mathrm{FeSO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)$
$\mathrm{K}_{2} \mathrm{O} \quad 16 \%$
$\mathrm{Mg} \quad 8 \%$
S 20\%
$\mathrm{Fe} \quad 5 \%$

Grind in a mortar and pestle, and measure from a static specimen


# Micronize (corundum/hexane) and re-measure a rotating specimen 

## Pictures of the specimen surfaces



Hand Ground


Micronised


## Look up the structures and carry out a Rietveld refinement



## Quantitative Phase Analysis

| Langbeinite | $\mathrm{K}_{2} \mathrm{Mg}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ | $80.49(4) \mathrm{wt} \%$ |
| :---: | :---: | :---: |
| Szomolnokite | $\mathrm{FeSO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)$ | $15.6(1) \mathrm{wt} \%$ |
| Halite | NaCl | $3.74(6) \mathrm{wt} \%$ |
| Vanthoffite?? | $\mathrm{Na}_{6} \mathrm{Mg}\left(\mathrm{SO}_{4}\right)_{4}$ | $0.2(2) \mathrm{wt} \%$ |

## Observed and Expected Composition

|  | Observed, wt\% | Bag, wt\% |
| :---: | :---: | :---: |
| $\mathrm{FeSO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)$ | $15.6(1)$ | 17.5 |
| Fe | 5.1 | 5 |
| $\mathrm{~K}_{2} \mathrm{O}$ | 18.2 | 16 |
| Mg | 9.4 | 8 |
| S | 21.5 | 20 |

Plaster


## Carry out a Rietveld refinement



## Quantitative Phase Analysis

| Name | Formula | Concentration, <br> $w t \%$ |
| :---: | :---: | :---: |
| Quartz | $\mathrm{SiO}_{2}$ | $48.0(2)$ |
| Gypsum | $\mathrm{CaSO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ | $22.8(2)$ |
| Bassanite | $\mathrm{CaSO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{0.5}$ | $12.0(1)$ |
| Dolomite | $\mathrm{CaMg}\left(\mathrm{CO}_{3}\right)_{2}$ | $9.3(2)$ |
| Albite | $(\mathrm{Na}, \mathrm{Ca})(\mathrm{Si}, \mathrm{Al})_{4} \mathrm{O}_{8}$ | $7.9(2)$ |

But the bassanite was not present in the original sample!
[kadu1013.gs] Wall Plaster, micronised $(40,30)$ JAK, SCAN: 3.0/99.98/0.02/1(sec), Cu, I(max)=2926, 04/14/06 07:11a


When heated in air, gypsum is converted slowly to the (metastable) hemihydrate at about $70^{\circ} \mathrm{C}$ or below, and rapidly at $90^{\circ} \mathrm{C}$ and above...
W. A. Deere, R. A. Howie, and J. Zussman,

An Introduction to the Rock-Forming Minerals, $2^{\text {nd }}$ Edition (1992), p. 614.

## Renormalize the concentrations:

| Name | Formula | Concentration, <br> $w t \%$ |
| :---: | :---: | :---: |
| Quartz | $\mathrm{SiO}_{2}$ | $47.0(2)$ |
| Gypsum | $\mathrm{CaSO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ | $36.2(3)$ |
| Dolomite | $\mathrm{CaMg}\left(\mathrm{CO}_{3}\right)_{2}$ | $9.1(2)$ |
| Albite | $(\mathrm{Na}, \mathrm{Ca})(\mathrm{Si}, \mathrm{Al})_{4} \mathrm{O}_{8}$ | $7.7(2)$ |

## The finish coat plaster is different (dry the slurry at ambient conditions!)



## QPA of Finish Coat Plaster

| Mineral | Formula | Concentration, <br> wt\% $\%$ |
| :---: | :---: | :---: |
| Gypsum | $\mathrm{CaSO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ | $34.2(2)$ |
| Brucite | $\mathrm{Mg}(\mathrm{OH})_{2}$ | $19.3(1)$ |
| Aragonite | $\mathrm{CaCO}_{3}$ | $26.0(2)$ |
| Calcite | $\mathrm{CaCO}_{3}$ | $13.0(1)$ |
| Quartz | $\mathrm{SiO}_{2}$ | $3.09(6)$ |
| Periclase | MgO | $2.12(8)$ |
| Corundum $(!)$ | $\mathrm{Al}_{2} \mathrm{O}_{3}$ | $2.3(1)$ |

## Crud on Cloth



## Water Still Scale





## Unit Cell Volume of Magnesian Calcite, $\mathrm{Ca}_{1-\mathrm{x}} \mathrm{Mg}_{\mathrm{x}} \mathrm{CO}_{3}$



## Clean the still with citric acid solution



W20307-1-4 citrate solution 3rd solid (30,10,0.6,2.5) JAK - File: kadu1401.raw - Type: $2 \mathrm{Th} /$ Th locked - Start: $4.998^{\circ}-$ End: $70.007^{\circ}$ - Step: $0.020^{\circ}-$ Step time: $192 . \mathrm{s}-\mathrm{Temp} .: 25^{\circ} \mathrm{C}$ (Room) - Time Started: Operations: Import
Commander Sample ID - File: kadu1397.raw - Type: 2Th/Th locked - Start: $4.998^{\circ}$ - End: $70.007^{\circ}$ - Step: $0.020^{\circ}$ - Step time: $96 . ~ s-T e m p .: ~ 25{ }^{\circ} \mathrm{C}$ (Room) - Time Started: 0 s - 2 - Theta: $4.998^{\circ}$ - Theta: 2. Operations: Import
W Commander Sample ID - File: kadu1393.raw - Type: 2Th/Th locked - Start: $4.998^{\circ}$ - End: $70.007^{\circ}$ - Step: $0.020^{\circ}$ - Step time: 82.5 s - Temp.: $25^{\circ} \mathrm{C}$ (Room) - Time Started: 0 s - 2 -Theta: $4.998{ }^{\circ}$ - Theta: 2 Operations: Import
$\square$ 00-028-2003 (N) - Earlandite, syn - Ca3(C6H5O7)2•4H2O - Y: 38.37 \% - d x by: 1. - WL: 1.5406-Monoclinic - a 30.94000 - b 5.93000 - c 10.56000 - alpha 90.000 - beta 93.740 - gamma $90.000-$ Base-c
02-060-8946 (N) - Calcium hydrogen citrate trihydrate - C6H6O7.Ca•3(H2O) - Y: 74.45 \% - d x by: 1. - WL: 1.5406-Monoclinic - a 8.79550 - b $5.58910-\mathrm{c} 23.81800-\mathrm{alpha} 90.000-$ beta 116.770 - gamm

Rocks



## Quantitative Phase Analysis

Black Beach Rock from Black Dragon Bay, Zhujiajian Island

20.8(1) wt\%<br>28.0(1) wt\%<br>40.2(1) wt\%<br>10.9(1) wt\%

## Ace River Pebble



## Front Hall Slate



## A Broken Soup Bowl




2 gH , deg

## Stoneware QPA

| Name | Formula | $\mathrm{Wt} \%$ |
| :--- | :--- | :---: |
| Quartz | $\mathrm{SiO}_{2}$ | $33.5(2)$ |
| Cristobalite | $\mathrm{SiO}_{2}$ | $0.98(9)$ |
| Mullite | $\mathrm{Al}_{2}\left(\mathrm{Al}_{2.5} \mathrm{Si}_{1.5}\right) \mathrm{O}_{9.75}$ | $16.8(2)$ |
| Sillimanite | $\mathrm{Al}_{2} \mathrm{SiO}_{5}$ | $2.6(5)$ |
| Zircon | $\mathrm{ZrSiO}_{4}$ | $0.31(3)$ |
| Grossular | $\mathrm{Ca}_{3} \mathrm{Al}_{2}\left(\mathrm{SiO}_{4}\right)_{3}$ | $0.22(6)$ |
| Glass |  |  |

## Snow Dirt




Scaling: 53.0( 10.0X)

## Tooth and Filling




$0^{\infty} \times 18$


$\xrightarrow{b} a$


$$
c \times{ }^{b}
$$



$\begin{array}{r}\mathrm{Cl} \\ \mathrm{Sn} \\ \hline\end{array}$

## Childrens' Grape Advil





## Concentrations

Observed

- Ibuprofen = 17.3 - $13.07 \mathrm{wt} \%$
- Mannitol $=82.7$
-?


## Concentrations

- Ibuprofen $=13.5(2) \mathrm{wt} \%(13.07)$
- Mannitol $=69.6(2) \mathrm{wt} \%$
- Cellulose $=16.8(6) \mathrm{wt} \%$
- Plus small concentrations of many other compounds!


## Children's Grape Advil

■ Ibuprofen

- Artificial flavor
- Aspartame

$\square$ Cellulose acetate phthalate
- D\&C Red \#30 lake

■ FD\&C Blue \#2 lake

- Gelatin

■ Magnasweet


Alka-Seltzer



## Alka-Seltzer Analysis

| $\mathrm{wt} \%$ | Expected | Refined |
| :---: | :---: | :---: |
| Sodium <br> Bicarbonate | 59.12 | $63.1(1)$ |
| Acetylsalicylic <br> Acid | 10.03 | $8.6(1)$ |
| Citric Acid | 30.86 | $28.3(1)$ |

$$
A K L D=0.080
$$

# Decongestant 

It was a bad trip home

from the conference ...

## Duratuss GP 120-1200








## Back to Duratuss...



## Quantitative Phase Analysis of Duratuss GP 120-1200

| Phase | $\mathrm{wt} \%$ | int. std. <br> $\mathrm{wt} \%$ | expected <br> mg | $\mathrm{wt} \%$ |
| :---: | :---: | :---: | :---: | :---: |
| guaifenesin | $91.62(2)$ | $90.4(4)$ | 1200 | 90.9 |
| pseudoephedrine <br> hydrochloride | $8.38(15)$ | $7.7(4)$ | 120 | 9.1 |
| sum | 100 | 98.1 | 1320 | 100 |

Actual tablets weigh ~1540 mg

Chemistry Textbook Paper


## Rietveld Difference Plot



## Quantitative Phase Analysis

## Concentration

Cellulose 86.6 wt \%
Rutile $\quad 1.1 \mathrm{wt} \%$
Anatase $0.1 \mathrm{wt} \%$
Calcite $1.6 \mathrm{wt} \%$
Kaolinite $10.5 \mathrm{wt} \%$
Chlorite trace

## Deer Attractant



# C'Mere Deer powder 

rice bran, soybeans, corn, yeast, trace minerals ( $<2 \%$ ),<br>artificial and natural flavorings



# Address on the label is: EST, LLC 205 Fair Ave. Winnsboro LA 71295 

Most US rice is grown in LA, so perhaps rice bran is cheap!



# Rice is known to be good at extracting silica from the soil. 

Maybe some quartz, too?





## Quantitative Phase Analysis of C'Mere Deer Powder

| Phase | Raw wt\% | Abs. wt\% | Real wt\% |
| :---: | :---: | :---: | :---: |
| $\mathrm{NaAlSiO}_{4}$ | $5.2(2)$ | 0.42 | $0.4(1)$ |
| Amylose | $56.9(4)$ | 4.60 | $4.7(1)$ |
| Sucrose | $16.3(2)$ | 1.32 | $1.3(1)$ |
| Si | $21.62(6)$ | 1.75 | - |

The Merck Index says that corn is typically $27 \%$ amylose and $73 \%$ amylopectin, so this translates into $\sim 17 \mathrm{wt} \%$ corn.

## Scaling "Experiments"

| Variable | Rice Bran | Corn | Soybeans | Yeast |
| :---: | :---: | :---: | :---: | :---: |
| (background- <br> subtracted) <br> raw patterns | 70 | 10 | 10 | 10 |
| Amylose scale <br> factors |  | 11 |  |  |
| Diffuse <br> scattering <br> amplitudes | 83 |  |  |  |
| Best Guess | 76 | 15 | 4 | 4 |

$1.3 \%$ sucrose, and traces of minerals and flavors.

## Teaching Chemistry with Experimentally Measured 3D Structures

## Colin Groom

Cambridge Crystallographic Data Centre Cambridge, UK teaching@ccdc.cam.ac.uk


## History of the CCDC

- Founded in 1965 with grant funding in the Department of Chemistry, University of Cambridge
- Self financing, self administering Institution since 1987
- Not-for-profit, charitable, research institute
- Recognized institute for postgraduate degrees of the University of Cambridge
- Objectives
- "advancement and promotion of the science of chemistry and crystallography for the public benefit"


## Cambridge Structural Database

 Worldwide repository of validated small-molecule crystal structures

CSD Growth 1970-2010
Dec 09 -500,000th structure milestone reached

Lamotrigine
Acta Cryst., Sect.C:Cryst Struct. Commun. (2009), 65, 0460 Refcode: EFEMUX01


## The Cambridge Crystallographic Data Centre

- Compiles the Cambridge Structural Database
- Develops scientific products and services
- Maximises worldwide accessibility to the CSD
- Web access from 186 countries
- Applications installed in 69 countries
- Performs and supports fundamental research
- 50 PhD students since 1991
- Over 500 publications
- Promotes and supports applications of crystal structure information
- 15,000 users of Mercury



## Why small molecule crystals?

- Organic non-linear optical materials
- Piezoelectric crystals
- Pigments
- Organic semiconductors
- Liquid crystals
- Pharmaceuticals



## Why small molecule crystals?

- Biological processes
- Pressure effects on amino acids
- pressure cooking
- piezophilic organisms
- The binding of drug molecules
- Cystals in the body
- Kidney stones
calcium oxalate, uric acid or cystine
- Gout

Monosodium urate

## Why small molecule crystals?

- Understanding of every-day physical processes
- Chocolate



## 3D Visualisation

- Chemistry students need 3D visualisation proficiency
- 3D visualisation shown to enhance students conceptual understanding and spatial abilities

Williamson, V. M. J. Chem. Educ., 2008, 85, 718-723
Wu, H. K. Sci. Educ. Res. Pract., 2004, 8, 61-72
Bodner, G. M. The Chemical Educator, 1997, 2
"Because basic 3D spatial relationships in molecules have systematic and profound causal significance, chemistry is an extraordinary fertile field for visual learning"

2001 NSF Workshop: Molecular Visualisation
in Science Education

## Molecules in the CSD

- Many drugs
- Omeprazole



## Molecules in the CSD: Porphyrin Hamburgers



NIPBEU



BURGER


## Molecules in the CSD: Star Wars TIE Fighter



BOSQAB


TIE FIGHTER

## Molecules in the CSD: Pretzelanes



PRETZEL


SARFEX

## Molecules in the CSD: Olympiadane



Olympic rings


SOHNEI

Molecules in the CSD:
Paracyclophane/Dehydrobenzoannulene Hybrids


QEQJAY


BOW TIE

## Molecules in the CSD: Nanoputians



SAFKOA


CHEF

## Experimentally Measured Data

- Use of experimentally measured data is of great pedagogical value
- Inherent experimental error and statistical variation provides an opportunity to deal with the uncertainties of chemistry
- Challenges students to think more critically about bonding and molecular structure
- Encourages method and limitations of data collection to be considered
- Measured data shown to enhance student learning

DeHaan, R. L. J. Sci. Educ. Technol., 2005, 14, 253-269 Handelsman, J. Science 2004, 304, 521-522
Prince, M. J. Eng. Educ., 2004, 89, 1-9

## Free Educational Resources

- Teaching subset of 500 CSD entries chosen to illustrate a wide range of 3D structural issues
- Web-based interface for browsing the teaching subset
- A downloadable version of the Mercury visualiser
- Tutorials and worksheets
http://www.ccdc.cam.ac.uk/free_services/teaching/


## Teaching Subset of the CSD

- 500 structures that have important applications in chemistry and chemical education selected from the full CSD of almost half a million crystal structures
- Includes key molecules typically used in textbooks to exemplify core concepts and principles
- Simple examples of all the main molecular geometry types
- Chemically diverse; representative of full database
http://www.ccdc.cam.ac.uk/free_services/teaching/


## How Can I Access the Subset

- Mercury visualiser
- Advanced crystal structure visualisation program by CCDC
- Freely downloadable desktop application
- Teaching subset embedded and available via Databases menu
- Interactive web-based interface
- Uses WebCSD: new on-line search interface to the CSD
- Not required to download, install or register any software


## http://www.ccdc.cam.ac.uk/free_services/teaching/


CAFINE: 1,3,7-Trimethyl-purine-2,6-dione monohydrate
D.J.Sutor; Acta Crystallogr. (1958), 11, 453, doi:10.1107/S0365110

## http://www.ccdc.cam.ac.uk/free_services/teaching/

## www.ccdc.cam.ac.uk



## http://www.ccdc.cam.ac.uk/free_services/teaching/

## www.ccdc.cam.ac.uk

## Further Information

- Teaching 3D Structural Chemistry Using Crystal Structure Databases 1. An Interactive Web Accessible teaching Subset of the Cambridge Structural Database
Gary M. Battle and Frank H. Allen, Gregory M. Ferrence J. Chem. Educ., Articles ASAP; DOI: 10.1021/ed100256k
- Teaching 3D Structural Chemistry Using Crystal Structure Databases 2. Teaching Units that Utilize an Interactive Web Accessible teaching Subset of the Cambridge Structural Database Gary M. Battle and Frank H. Allen, Gregory M. Ferrence J. Chem. Educ., Articles ASAP; DOI: 10.1021/ed100257t
- Applications of the Cambridge Structural Database in Chemical Education
Gary M. Battle and Frank H. Allen, Gregory M. Ferrence J. Appl. Cryst. Special Teaching Edition, 2010 submitted


# Crystallography World of Wonders 

Claudia J. Rawn

## crawn@utk.edu

University of Tennessee/
Oak Ridge National Laboratory

## Al vs $\mathrm{Al}_{2} \mathrm{O}_{3}$

## Al

Melts at $660^{\circ} \mathrm{C}$
FCC $a=4.0495 \AA$
Density $=2.71 \mathrm{gm} / \mathrm{cm}^{3}$

(b)
$\mathrm{Al}_{2} \mathrm{O}_{3}$
Melts at $2000^{\circ} \mathrm{C}$
Based on HCP
$a=4.7589$ and $c=12.991 \AA$
Density $=3.98 \mathrm{gm} / \mathrm{cm}^{3}$


## PROPERTIES FROM BONDING: $\mathrm{T}_{\mathrm{M}}$

- Bond length, $\mathbf{r}$

- Bond energy, Eo

- Melting Temperature, Tm

$T_{m}$ is larger if $E_{o}$ is larger.


## DENSITIES OF MATERIAL CLASSES

$\rho_{\text {metals }} \geq \rho_{\text {ceramics }} \geq \rho_{\text {pc }}$
Metals/ Alloys

Graphitel
Ceramicsl Polymers
Semicond
Composites/
fibers
Why?
Metals have...

- close-packing (metallic bonding)
- large atomic mass

Ceramics have...

- less dense packing (covalent bonding)
- often lighter elements Polymers have...
- poor packing (often amorphous)
- lighter elements (C,H,O) Composites have...
- intermediate values


From W.D. Callister: Materials Science and Engineering: An Introduction

## IONIC BONDING

- Occurs between + and - ions.
- Requires electron transfer.
- Large difference in electronegativity required.
- Example: NaCl



## EXAMPLES: IONIC BONDING

- Predominant bonding in Ceramics


Give up electrons
Acquire electrons
Adapted from Fig. 2.7, Callister 6e. (Fig. 2.7 is adapted from Linus Pauling, The Nature of the Chemical Bond, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.

## COVALENT BONDING

- Requires shared electrons
- Example: $\mathrm{CH}_{4}$

C: has 4 valence e, needs 4 more
$H$ : has 1 valence e, needs 1 more

Electronegativities are comparable.


Adapted from Fig. 2.10, Callister $6 e$.
H , atomic number 1 , electronic configuration $1 \mathrm{~s}^{1}$
C , atomic number 6 , electronic configuration $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2}$

## EXAMPLES: COVALENT BONDING


adapted from Linus Pauling, The Nature of the Chemical Bond, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.

- Molecules with nonmetals
- Elemental solids (RHS of Periodic Table)
- Molecules with metals and nonmetals
- Compound solids (about column IVA)


## Metallic bonding



From W.D. Callister: Materials Science and Engineering: An Introduction


## ENERGY AND PACKING

- Non dense, randon

- Dense, regular pac


Dense, regular-packed structures tend to have lower energy.

## FCC



From W.D. Callister: Materials Science and Engineering: An Introduction

## HEXAGONAL CLOSE-PACKED STRUCTURE (HCP)

- 3D Projection


Adapted from Fig. 3.3, Callister $6 e$.

- Coordination \# = 12
- $\mathrm{APF}=0.74$
- 2D Projection


From W.D. Callister: Materials Science and Engineering: An Introduction

## FCC and HCP close-packed lattices

- Both lattices are formed by a sequential stacking of planar layers of close packed atoms.
- Within each layer each atom has six nearest neighbors.



## FCC and HCP close-packed lattices



The "A" layer all positions that are directly above the centers of the A atoms are referred to as "A" positions, whether they are occupied or not

## FCC and HCP close-packed lattices

- Both FCC and HCP lattices are formed by stacking like layers on top of this first layer in a specific order to make a three dimensional lattice.
- These become close-packed in three dimensions as well as within each planar hexagonal layer.
- Close packing is achieved by positioning the atoms of the next layer in the troughs between the atoms in the "A" layer


## FCC and HCP close-packed lattices



- Each one of these low positions occurs between a triangle of atoms. Some point towards the top of the page and some point towards the bottom of the page.


## FCC and HCP close-packed lattices



- Any two of these immediately adjacent triangles are too close to be both occupied by the next layer of atoms.
- Instead the next close-packed "B" layer will fill every other triangle, which will all point in the same direction.


## FCC and HCP close-packed lattices


"A" layer
"B" layer

- The "B" layer is identical to the A-layer except for its slight off translation.
- Continued stacking of close-packed layers on top of the B-layers generates both the FCC and HCP lattices.


## The FCC close-packed lattice


"B" layer
"C" layer

- The FCC lattice is formed when the third layer is stacked so that its atoms are positioned in downward-pointing triangles of oxygen atoms in the " $B$ " layer.
- These positions do not lie directly over the atoms in either the A or B layers, so it is denoted as the "C" layer


## The FCC close-packed lattice



"A" layer
"B" layer
"C" layer

- The stacking sequence finally repeats itself when a fourth layer is added over the C atoms with its atoms directly over the A layer (the occupied triangles in the C layer again point downward) so it is another A layer.
- The FCC stacking sequence (ABCA) is repeated indefinitely to form the lattice:
...ABCABCABCABC...


## The FCC close-packed lattice

Even though this lattice is made by stacking hexagonal planar layers, in three dimensions its unit cell is cubic. A perspective showing the cubic FCC unit cell is shown below, where the bodydiagonal planes of the atoms are the original $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and layers of oxygen atoms


## The HCP close-packed lattice


"A" layer


Repeat "A" layer

- The HCP lattice is formed when the third layer is stacked so that its atoms are positioned directly above the "A" layer (in the upward facing triangles of the "B" layer).
- The HCP stacking sequence ( ABAB ) is repeated indefinitely to form the lattice:
- ...ABABABAB...


## FCC STACKING SEQUENCE

- ABCABC... Stacking Sequence
- 2DI

A sites
$B$ sites
C sites

- FCC Unit Cell

From W.D. Callister: Materials Science and Engineering: An Introduction

## Perspective of FCC and HCP structures viewed parallel to close-packed planes



FCC (...ABCABCABC...) HCP (...ABABABAB...) ${ }_{25}$

## Ceramics

- Characteristics
- Hard
- Brittle
- Heat- and corrosion-resistant
- Made by firing clay or other minerals together and consisting of one of more metals in combination with one or more nonmetals (usually oxygen)


## Nomenclature

- The letter a is added to the end of an element name implies that the oxide of that element is being referred to:
- $\mathrm{SiO}_{2}$ - silica

$$
\begin{aligned}
& \mathrm{Si}^{4+}+2\left(\mathrm{O}^{2-}\right) \\
& 2\left(\mathrm{Al}^{3+}\right)+3\left(\mathrm{O}^{2-}\right) \\
& \mathrm{Mg}^{2+}+\mathrm{O}^{2-}
\end{aligned}
$$

Positively charged ions cations example: $\mathrm{Si}^{4+}, \mathrm{Al}^{3+}, \mathrm{Mg}^{2+}$ Negatively charged ions - anions example: $\mathrm{O}^{2-}$

## Closed Packed Lattices

The Basis for Many Ceramic Crystal Structures

- Ionic crystal structures are primarily formed as derivatives of the two simple close packed lattices: face center cubic (FCC) and hexagonal close packed (HCP).
- Most ionic crystals are easily derived from these by substituting atoms into the interstitial sites in these structures.


## Closed Packed Lattices

- The larger of the ions, generally the anion, forms the closed-packed structure, and the cations occupy the interstices.
- We will often consider the anion to be oxygen ( $\mathrm{O}^{2-}$ ) for convenience since so many important ceramics are oxides. However, the anion could be a halogen or sulfur.
- In the case of particularly heavy cations, such as zirconium and uranium, the cations are larger than the oxygen and the structure can be more easily represented as a closed packed arrangement of cations with oxygen inserted in the interstices.


# Location and Density of Interstitial Sites 

## Interstitial Sites

- The interstitial sites exist between the layers in the close-packed structures
- There are two types of interstitial sites
- tetrahedral
- octahedral
- These are the common locations for cations in ceramic structures


## Interstitial Sites

- Each site is defined by the local coordination shell formed between any two adjoining close-packed layers
- the configuration of the third layer does not matter
- the nearest neighbor configuration of oxygen atoms around the octahedral and tetrahedral cations is independent of whether the basic structure is derived from FCC or HCP
- FCC and HCP have the same density of these sites


## Interstitial sites



Numbers $=$ A sites
lower case letters $=B$ sites

- Octahedral: 3-6-7-b-c-f
-3 from the A layer and 3 from the B layer
- an octahedron has eight sides and six vertices
- the octahedron centered between these six atoms, equidistant from each - exactly half way between the two layers


## Interstitial sites



Numbers $=$ A sites
lower case letters $=B$ sites

The octahedral site neither directly above nor directly below any of the atoms of the A and B layers that surround the site

- The octahedral site will be directly above or below a Clayered atom (if it is FCC)
- These octahedral sites form a hexagonal array, centered exactly half-way between the close-packed layers


## Interstitial sites



Numbers $=$ A sites
lower case letters $=B$ sites

- Tetrahedral: 1-2-5-a and e-h-i-9
- 1 negative tetrahedron
- 1 positive tetrahedron
- three of one layer and one of the second layer
-3 A and 1 B - one apex pointing out of the plane of the board
-3 B and 1 A - one apex pointing into the plane of the board


## Interstitial sites



Numbers $=$ A sites
lower case letters $=B$ sites

- Tetrahedral: 1-2-5-a and e-h-i-9
- For both tetrahedral sites the center of the tetrahedron is either directly above or below an atom in either the A or B layers
- The geometric centers are not halfway between the adjacent oxygen planes but slightly closer to the plane that forms the base of the tetrahedron


## Interstitial sites



Numbers $=$ A sites
lower case letters $=B$ sites

## Octahedral sites in the FCC Unit Cell

One octahedral site halfway along each edge and one at the cube center


The FCC cell contains four atoms
six faces that each contribute one half and atom eight corners that each contribute one-eighth an atom
FCC cell contains four octahedral sites

12 edges each with
one quarter of a site
The ratio of octahedral sites to atoms one site in the center Is $1: 1$

## Tetrahedral sites in the FCC Unit Cell

One tetrahedral site inside each corner



Eight tetrahedral sites

The ratio of tetrahedral sites to atoms Is $2: 1$


## General Structural formula for close-packed structures

- $\mathrm{T}_{2 \mathrm{n}} \mathrm{O}_{\mathrm{n}} \mathrm{X}_{\mathrm{n}}$

T - Tetrahedral sites
O - Octahedral sites
X - Anions

Example:
$\mathrm{A}_{2 \mathrm{n}} \mathrm{B}_{\mathrm{n}} \mathrm{X}_{\mathrm{n}}$
$\mathrm{A}=$ tetrahedral sites
$B=$ octahedral sites
$\mathrm{X}=$ anions
$\mathrm{MgAl}_{2} \mathrm{O}_{4}$
If fully occupied $\mathrm{A}_{8} \mathrm{~B}_{4} \mathrm{X}_{4}$
Mg in tetrahedral sites $-1 / 8$ of the sites occupied
Al in octahedral sites $-1 / 2$ of the sites occupied

## Linus Pauling

- Nobel Prize in Chemistry 1954
- "for his research into the nature of the chemical bond and its application to the elucidation of the structure of complex substances"
- Nobel Peace Prize 1962
- Born in 1901 and died in 1994
- We may use Pauling's rules to predict the tendency for a specific compound to form a specific crystal structure


## Pauling's Rules

- Pauling's rules are based on the geometric stability of packing for ions of different sizes and simple electrostatic stability arguments.
- These geometric arguments treat the ions as hard spheres which is an over implication


## Ionic crystal radii

- Ionic radii (as defined by interatomic spacings) do vary from compound to compound
- they tend to vary most strongly with the valance state of the ion and the number of nearest neighbor ions of the opposite charge
- We may consider an ionic radius to be constant for a given valance state and nearest-neighbor coordination number


## Pauling's Rule 1



| CN | Disposition of ions <br> about <br> central atom | corners of <br> a cube |
| :---: | :---: | :---: |
| 8 | corners of <br> an octahedron | $\geq 0.732$ |
| 4 | corners of <br> a tetrahedron | $\geq 0.225$ |
| 2 | corners of <br> a triangle | $\geq 0.155$ |



Cubic $a=b=c$

$$
\alpha=\beta=\gamma=90^{\circ}
$$

Hexagonal $\quad a=b \neq c \quad \alpha=\beta=90^{\circ}, \gamma=120^{\circ}$


Tetragonal

$$
a=b \neq c
$$

$$
\alpha=\beta=\gamma=90^{\circ}
$$

Rhombohedral $\quad a=b=c \quad \alpha=\beta=\gamma \neq 90^{\circ}{ }^{\circ}$


Orthorhombic $a \neq b \neq c \quad \alpha=\beta=\gamma=90^{\circ}$

Monoclinic $\quad a \neq b \neq c \quad \alpha=\gamma=90^{\circ}, \neq \beta$


Triclinic

$$
a \neq b \neq c \quad \alpha \neq \beta \neq \gamma
$$

## Rocksalt

- $\mathrm{NaCl}, \mathrm{KCl}, \mathrm{LiF}, \mathrm{MgO}, \mathrm{CaO}, \mathrm{SrO}, \mathrm{NiO}$, $\mathrm{CoO}, \mathrm{MnO}, \mathrm{PbO}$
- for all of these the anion is larger than cation and forms the basic FCC lattice


The lattice parameter of the cubic unit cell is "a." and each unit contains 4 formula units

## Calculating density

- NiO -rocksalt structure
$a=4.1771 \AA \quad$ space group $F m 3 m$

| Atom | Ox | Wy | x | y | z |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Ni | +2 | 4 a | 0 | 0 | 0 |
| O | -2 | 4 b | 0.5 | 0.5 | 0.5 |

$\rho=\frac{n^{\prime}\left(\sum M_{N i}+\sum M_{O}\right)}{V_{\text {unit cell }} N_{A V}}\left(\left(4.1771 \times 10^{-8} \mathrm{~cm}\right)^{3}\right)\left(6.022 \times 10^{23}\right.$ atom $\left./ \mathrm{mol}\right)$
$\frac{\mathrm{g} / \mathrm{mol}}{\mathrm{cm}^{3} \times \text { molecules } / \mathrm{mol}} \quad=6.81 \mathrm{~g} / \mathrm{cm}^{3}$

## Anti-fluorite


$\mathrm{Li}_{2} \mathrm{O}$
$\mathrm{a}=4.619 \AA$
space group Fm3m (225)

| atom | x | y | z | $\mathbf{W y}$ |
| :--- | :--- | :--- | :--- | :--- |
| O | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{4 a}$ |
| $\mathbf{L i}$ | $\mathbf{1} / \mathbf{4}$ | $\mathbf{1} / \mathbf{4}$ | $\mathbf{1} / \mathbf{4}$ | $\mathbf{8 c}$ |


[^0]:    "Crystal Structure Analysis for Chemists and Biologists", Glusker, Lewis and Rossi, VCH, 1994.

